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Abstract: A suitable mathematical formulation is used to study the thermal post buckling 
problem of orthotropic circular plates is presented herein. The total energy equation is reduced 
by assuming algebraic function for lateral displacement w. The radial tension per unit length is 
calculated by substituting the value of orthotropic parameter under simply supported and 
clamped boundary conditions. The thermal post buckling load carrying capacity of the plate is 
evaluated using integrated average for various values of orthotropic parameter β, and the 
numerical results obtained from the present investigation are compared with the results 
obtained from the known literatures. The results obtained for both cases are concurs well with 
reference values and the numerical results using integrated average shows more accurate values 
for the post buckling load.  
Keywords: Thermal post buckling; von Karman nonlinearity; orthotropic; circular plates; radial 
tension, simply supported, clamped   
 

INTRODUCTION 

The plate structures of isotropic or orthotropic nature is an important research topic 
because of its relation to ocean, aerospace, mechanical and civil engineering applications. 
Circular plates are extensively used in sensors and other elemental structures in engineering, 
the investigations on the behavior of mechanics such as deformation, vibration and buckling. 
Problems of vibrations and post buckling of circular plates have been studied by many authors 
using different methods such as finite element method, Berger’s approximations, shooting 
method, shear deformation theory etc. 

 

Figure 1. Structural analysis diagram and its applications 

Nonlinear analysis of structural members with effects of geometric and material 
nonlinearity is of research importance, as the results obtained by the analysis leads to meaning-
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ful yet accurate results in lesser times. Most of the earlier studies have been using the classical 
methods/energy methods/variational methods and the versatile finite element method. How-
ever, the solution procedure in all the studies mentioned above involves in solving higher 
mathematical terms and solving higher order differential equations or involve in cumbersome 
calculations. Structural members when subjected to compressive loads are prone to an 
instability phenomenon called buckling (Wang & Wang, 2004). According to the linear theory of 
buckling, the structures are treated as functionally failed, when the compressive load reaches 
the buckling load. With the present day, highly optimum and cost effective designs in structural 
engineering, it is not necessary to treat that the structure fails at the buckling load, contrary to 
the popular belief. The inherent geometric nonlinearity involved gives an additional load carry-
ing capacity to the structures after phenomenon of buckling (Dym & Hsu, 1975; Pearson, 1956). 
The structures are capable of taking additional compressive loads with high deformations.  But, 
if these deformations are tolerable and do not effect the functional requirements, the additional 
load carrying capacity of these structure, called as  the post buckling load, can be advantageously 
used in the design process.  Further, the thermal post buckling load, due to a temperature rise 
from the stress free temperature, in the service condition of these structures, is an order of 
higher in magnitude than the mechanical loads as seen in the literature (Dym & Hsu, 1975; 
Pearson, 1956). This property can be used advantageously for aerospace and other structures 
subjected to thermal loads due to the temperature raise.   

The post buckling behavior of orthotropic circular plates evaluated using finite element 
analysis has been described in (Kanaka Raju & Venkatewara Rao, 1983). Rao and Varma (G 
Venkateswara Rao & Varma, 2007) used a simple formulation to predict the thermal post 
buckling capacity of uniform, isotropic circular plates by finding the edge tensile load with 
simply supported and clamped boundary conditions. This formulation reinvestigated by using 
an intuitive approach for evaluating the thermal post buckling load carrying capacity of circular 
plates in (Ramaraju & Gundabathula, 2009). Li et al. (Li, Batra, & Ma, 2007) studied the 
vibrations of prebuckled and thermally post buckled polar orthotropic plates with simply sup-
ported and clamped boundary conditions by using shooting method. The effects of temperature 
rise and the boundary conditions on plate’s frequencies have been analyzed. Using Rayleigh – 
Ritz method, Mazhari and Shahidi (Mazhari & Shahidi, 2011) investigated the post buckling 
behavior of circular homogenous plates with concentric holes under uniform radial loading. 
Varma and Rao (Varma & Rao, 2011) presented a novel formulation to study the thermal post 
buckling behavior of uniform thin circular plates with an edge rotational restraint on the basis of 
the radial edge tensile load. By applying finite element formulation, Raju and Rao (Raju & Rao, 
1985) discussed the post buckling behavior of linearly tapered orthotropic circular plates with 
different tapers. The post buckling behavior of elastic circular plates using simple finite element 
formulation has been presented by Rao and Raju (G Venkateswara Rao & Raju, 1979). For 
reducing the errors, the authors (G Venkateswara Rao & Raju, 1983) reinvestigated the problem 
of post buckling behavior by evaluating the nonlinear stiffness matrix using finite element 
formulation. The thermal post buckling behavior of circular plates with an edge rotational 
restraint has been investigated by Rao et.al (G. Venkateswara Rao, Raju, & Naidu, 1992) using 
finite element analysis.  

The influence of orthotropic parameters on the large amplitude response of circular plates 
with both simply supported and clamped boundary conditions has been studied in (Nath & 
Alwar, 1980). The buckling problem of tapered orthotropic circular plates has been investigated 
using computationally economic finite element method in (Bhushan, Singh, & Rao, 1993). The 
effects of numerous parameters such as boundary conditions, modular ratios and tapers for 
linear buckling load has been studied. In all these studies, the prediction of the post buckling 
load contains solving either the nonlinear differential equations or obtaining approximate solu-
tions from the nonlinear energy formulations and its complexity is high. Because of the coupling 
between the radial and strain components, the calculation of radial edge tensile load is very 
difficult from the nonlinear governing equations.   

Thin circular plates are commonly used structural members in large aerospace structures.  
During their service condition, these plates are subjected to thermal loads, arising from the aero-
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dynamic and/or solar heating. Prediction of the thermal post buckling load of such plates serves 
the purpose of arriving at the cost effective designs as mentioned earlier. However, the circular 
plates pose a difficulty, because of the explicit coupling between the radial and circumferential 
strains. As such, the tension developed in the plate configuration due to large deflections is not 
easier for derivation, unless some assumptions or approximations are made. A new mathema-
tical approximation technique to study the thermal post buckling behavior of orthotropic 
circular plates is described in this manuscript. The radial edge tensile load is evaluated by 
assuming suitable admissible function for the lateral displacement ‘w’, using substitution 
method based on von Karman nonlinearities and hence calculated the thermal post buckling 
load carrying capacity for various values of orthotropic parameter β. The present formulation 
requires only the knowledge of radial edge tensile load developed due to the large lateral 
displacements and linear buckling load parameter. Furthermore, a comparative study is carried 
out for the post buckling problem with and without using integrated average which gives a clear 
information about the results of this formulation.   

METHODS 

Consider an orthotropic circular plate of radius a and constant thickness h with an 
external radial uniform compressive load Nr per unit length at the boundary. 

 

Figure 2. The buckling and post buckling of circular plate (Williams, Griffin, Homeijer, Sankar, & 
Sheplak, 2007) and its graphical representation. 

The strain displacement relations of orthotropic circular plate for axisymmetric conditions 
are given by 
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1 dw
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 
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By using the above mentioned relations, the strain energy U, of the orthotropic circular plate can 
be defined as 
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By substituting the values of C1, C2, C12, D1, D2, D12 , then equation (5) will become  
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When u = 0, the equation (6) becomes  
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After substitution of the values and elimination of h, equation (7) can be reduced as shown in 
equation (8). 
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where 
r

E

E

=  is the orthotropic parameter with rE E  .  

The work done due to the external compressive load Nr per unit length at the boundary is 
given by 
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where rN  is the radial load distribution per unit length. 

By using substitution for rN , equation (9) can be written in terms of β and  as follows. 
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The total potential energy of the orthotropic circular plate can be indicated as 
 = U − W           (11) 

The equation of total energy is reduced using Rayleigh – Ritz method included in (G 
Venkateswara Rao & Raju, 2002; Venkateswara Rao & Kanaka Ruju, 1984) in view of the 
assumed displacement functions. This paper describes the minimization of total potential energy 
by assuming algebraic function for lateral displacement w.  

The way of finding radial edge tensile load and hence the thermal post buckling load 
carrying capacity is discussed in the preceding section. The suitable admissible function for the 
lateral displacement w, which satisfies the geometric boundary conditions is used to find the 
radial edge tensile load. The value of Poisson’s ratio  is taken as 0.3. The orthotropic parameter 
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β is ranging from 1.2 to 2.0 in steps of 0.2 with simply supported and clamped boundary 
conditions are considered. The assumed algebraic function used in this study can be defined as 

2
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n

r
F b

a

  
= −     

          (12) 

The function F satisfies the geometric boundary conditions and the values of n =1 and n = 2 
depict the simply supported and clamped boundary conditions respectively.  
Simply supported:  
At r = 0 , w′ = 0;           At r = a, w = 0 
Clamped: 
At r = 0, w′ = 0;   At r = a, w = 0, w′ = 0 

An equivalent uniform compressive edge load Nr is established in when the plate is heated 
to a temperature ∆T from the initial stress free state. As the temperature is increased to critical 
temperature (∆Tr), buckling of the plate occurs owing to the development of critical com-

pressive uniform radial edge load
crrN . A uniform tensile edge load 

Tr
N  is developed as a result 

of high lateral displacements arose due to a further increase in temperature (∆T); allowing the 
plate to withstand more equivalent compressive radial edge load (Nr) beyond Ncr. Owing to the 
stated reasons, the total equivalent compressive uniform radial edge load carrying capacity of 

the circular plate (
NLrN ) or post buckling load can be expresses in non-dimensional mathe-

matical form as 
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where each term in equation (13) is non – dimensionalised as 
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and D is the plate flexural rigidity. 
As compared to the square plates (G Venkateswara Rao & Raju, 2004) it is very difficult to 

evaluate the tension parameter for the circular plates because of the coupling between the radial 
and circumferential strains by the radial displacement u. From equations (1) and (2), the radial 
tension per unit length can be taken as  
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By using the approximation proposed by Berger (Berger, 1954), which states that the second 

invariant of the strains are neglected or r   , Nr can be written as 
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By referring the work of Wah (Wah, 1963) given by Leissa (Leissa, 1969), the edge tensile load 
Nr is considered as constant and hence 
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By integrating equation (18) twice, u can be evaluated for the selected admissible 
function. The constants of integration are acquired using the boundary conditions on radial 
displacement. 

Once the functional form of u is known, a better approximation for the radial tension Nr, 
which is still treated as a constant, along the radius is obtained as 
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In equation (19), to make Nr constant along the radius, the integrated average of 
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By using values of edge tensile load parameters, the thermal post buckling load carrying 
capacity of the orthotropic circular plates can be evaluated for different values of orthotropic 
parameter β. 

The post buckling load of plates is given in terms of 
NLrN and 

cr
rN as 
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RESULTS AND DISCUSSION 

From equation (19), the radial edge tensile load Nr for orthotropic circular plate can be 
evaluated by assuming suitable admissible function for the lateral displacement w. The 
boundary of the plate is assumed to be simply supported and clamped. The thermal post buckl-
ing load carrying capacity is calculated using the algebraic assumed function which satisfies both 
the boundary conditions. The  values for various orthotropic parameters β ranging from 1.2 to 
2.0 are evaluated considering the integrated average. The numerical results are obtained in both 
cases are compared with results obtained from the known literatures.  

Table 1. Representing values of post buckling load carrying capacity ‘’ of simply supported 

circular plates for the assuming function 
2

0 1

n

r
F b
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  
= −     
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Present results 

β = 1.2 
Error 
(%) 

β = 1.4 
 

Error 
(%) 

β = 1.6 
Error 
(%) 

β = 1.8 
Error 
(%) 

β = 2.0 
Error 
(%) 

0.0 2.2624 
(2.2786)* 
(2.2557)** 

0.30 
1.01 

2.2554 
(2.2621)* 
(2.2466)** 

0.39 
0.69 

2.2469 
(2.2518)* 
(2.2381)** 

0.39 
0.61 

2.2356 
(2.2426)* 
(2.2300)** 

0.25 
0.57 

2.2284 
(2.2354)* 
(2.2224)** 

0.27 
0.59 

0.2 2.2751 
(2.2879)* 
(2.2661)** 

0.40 
0.96 

2.2667 
(2.2718)* 
(2.2566)** 

0.45 
0.67 

2.2565 
(2.2642)* 
(2.2478)** 

0.39 
0.73 

2.2457 
(2.2507)* 
(2.2393)** 

0.29 
0.51 

2.2385 
(2.2431)* 
(2.2314)** 

0.32 
0.52 

0.4 2.3065 
(2.3146)* 
(2.2972)** 

0.40 
0.75 

2.2973 
(2.3014)* 
(2.2866)** 

0.47 
0.65 

2.2827 
(2.2875)* 
(2.2767)** 

0.26 
0.48 

2.2709 
(2.2761)* 
(2.2673)** 

0.16 
0.39 

2.2596 
(2.2614)* 
(2.2584)** 

0.05 
0.13 

0.6 2.3506 
(2.3553)* 
(2.3487)** 

0.08 
0.27 

2.3396 
(2.3476)* 
(2.3363)** 

0.14 
0.48 

2.3267 
(2.3295)* 
(2.3246)** 

0.09 
0.21 

2.3166 
(2.3205)* 
(2.3136)** 

0.03 
0.3 

2.3092 
(2.3198)* 
(2.3032)** 

0.26 
0.72 

0.8 2.4328 
(2.4536)* 
(2.4203)** 

0.52 
1.37 

2.4102 
(2.4146)* 
(2.4054)** 

0.20 
0.38 

2.3995 
(2.4142)* 
(2.3913)** 

0.34 
0.95 

2.3792 
(2.3817)* 
(2.3780)** 

0.05 
0.16 

2.3666 
(2.3692)* 
(2.3654)** 

0.05 
0.16 

1.0 2.5202 
(2.5283)* 
(2.5114)** 

0.35 
0.67 

2.5014 
(2.5085)* 
(2.4932)** 

0.33 
0.61 

2.4862 
(2.4976)* 
(2.4761)** 

0.41 
0.87 

2.4665 
(2.4831)* 
(2.4600)** 

0.26 
0.94 

2.4548 
(2.4629)* 
(2.4448)** 

0.41 
0.74 

* Indicates the value of thermal post buckling load carrying capacity calculated without using integrated 
average (Nair, Kasim, & Salleh, 2017)   
** Indicates the reference values taken from (Kanaka Raju & Venkatewara Rao, 1983). 
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Table 1 present the thermal post buckling load carrying capacity () of simply supported 
orthotropic circular plates for different values of β ranging from 1.2 to 2.0. The numerical results 
evaluated from the present investigation is compared with the results from (Kanaka Raju & 
Venkatewara Rao, 1983; Nair et al., 2017). Besides, a comparative study has been carried out 
between the present values and known literature values. From this investigation it can be found 
that the values of  calculated using integrated average in the present formulation is more 
accurate. In this study the maximum error percentage obtained for simply supported boundary 
conditions is 1.37% which is less than the values without using integrated average (Nair et al., 
2017).  

Table 2. Representing values of post buckling load carrying capacity ‘’ of clamped circular plates 

for the assuming function 
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Error  
(%) 

β = 1.6 Error  
(%) 

β = 1.8 Error  
(%) 

β = 2.0 Error 
(%) 

0.0 2.2125 
(2.2237)* 
(2.1951)** 

0.79 
1.30 

2.2095 
(2.2145)* 
(2.1924)** 

0.78 
1.01 

2.2064 
(2.2095)* 
(2.1894)** 

0.78 
0.92 

2.1912 
(2.1988)* 
(2.1860)** 

0.24 
0.59 

2.1852 
(2.1876)* 
(2.1824)** 

0.13 
0.24 

0.2 2.2236 
(2.2515)* 
(2.2031)** 

0.93 
2.19 

2.2192 
(2.2416)* 
(2.2003)** 

0.86 
1.88 

2.2142 
(2.2300)* 
(2.1972)** 

0.77 
1.49 

2.2102 
(2.2195)* 
(2.1936)** 

0.76 
1.18 

2.1974 
(2.2084)* 
(2.1899)** 

0.34 
0.85 

0.4 2.2461 
(2.2865)* 
(2.2271)** 

0.85 
2.67 

2.2398 
(2.2728)* 
(2.2239)** 

0.71 
2.19 

2.2365 
(2.2673)* 
(2.2204)** 

0.73 
2.11 

2.2329 
(2.2529)* 
(2.2164)** 

0.74 
1.65 

2.2272 
(2.2373)* 
(2.2122)** 

0.68 
1.14 

0.6 2.2899 
(2.3356)* 
(2.2666)** 

1.03 
3.04 

2.2791 
(2.3210)* 
(2.2629)** 

0.72 
2.57 

2.2764 
(2.3122)* 
(2.2587)** 

0.78 
2.37 

2.2748 
(2.2964)* 
(2.2540)** 

0.92 
1.88 

2.2668 
(2.2781)* 
(2.2491)** 

0.79 
1.29 

0.8 2.3526 
(2.3928)*  
(2.3212)** 

1.35 
3.08 

2.3417 
(2.3799)*  
(2.3167)** 

1.08 
2.73 

2.3369 
(2.3681)*  
(2.3117)** 

1.09 
2.44 

2.3306 
(2.3552)*  
(2.3061)** 

1.06 
2.13 

2.3261 
(2.3333)*  
(2.3002)** 

1.13 
1.44 

1.0 2.4235 
(2.4557)* 
(2.3902)** 

1.39 
2.74 

2.4182 
(2.4386)* 
(2.3848)** 

1.40 
2.26 

2.4061 
(2.4278)* 
(2.3788)** 

1.15 
2.06 

2.3915 
(2.4153)* 
(2.3720)** 

0.82 
1.83 

2.3759 
(2.3951)* 
(2.3648)** 

0.47 
1.27 

* Indicates the value of thermal post buckling load carrying capacity calculated without using integrated 
average (Nair et al., 2017).    
** Indicates the reference values taken from(Kanaka Raju & Venkatewara Rao, 1983). 

The corresponding results for clamped circular plates are presented in Table 2. The values 

of  are evaluated for different orthotropic parameters with various 0b

h
 values. As in the case of 

simply supported boundary conditions, the  values calculated using integrated average give the 
closer values than (Nair et al., 2017) when compared to reference values. The maximum error 
percentage for clamped case is 2.67% which are matching well with the reference values taken 
from literature within the engineering accuracy. It is assumed in the Berger’s approximation that 
the strain energy due to the second variant of the middle surface strains can be neglected could 
be the reason for the much higher percentage errors for both the simply supported and clamped 
circular plate.  

The values of   evaluated using integrated average for various 0b

h
 ranging from 0 to 1 by 

the assumed algebraic function F under simply supported and clamped boundary conditions are 
plotted against various values of orthotropic parameters β ranging from 1.2 to 2.0 are illustrated 
in Figure 2. From the graph, it can be shown that the results obtained from the present 
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formulations and those given by the literature follow the same trend with a percentage error of 
1.37% to 2.67%.   

 

Figure 2. Thermal post buckling load carrying capacity of orthotropic circular plates for various 

0b

h
 against various values of orthotropic parameters β under simply supported (a) and clamped 

(b) boundary conditions. Ref (1-5) denotes the reference values from (Kanaka Raju & 
Venkatewara Rao, 1983).   

The post buckling problem of orthotropic plates are solved earlier using different 
mathematical formulations such as finite element approach, iterative methods and so on. The 
present mathematical method helps to reduce the complexity of the solution procedure and 
improve the accuracy of the results. The substitution method is used to reduce the difficulty of 
solving the governing differential equations which helps to find the thermal post buckling load 
carrying capacity of circular plates for various β values.   

CONCLUSIONS  

A suitable mathematical formulation in obtaining the thermal post buckling load carrying 
capacity of orthotropic circular plates using integrated average is presented in this paper by 
reducing the complexity of evaluating the edge tensile load. Based on von Karman nonlinearity, 
the differential equations of total potential energy is integrated to evaluate the linear buckling 
load and an algebraic admissible function for the lateral displacement is used to calculate the 
radial edge tensile load. The linear buckling load parameters and radial edge tensile load are 
used to determine the post buckling load of orthotropic circular plates for various values of 
orthotropic parameter β. The numerical results obtained in this study match well with those 
obtained from the known literatures within the engineering accuracy.     
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NOMENCLATURE  

a   = radius of the circular plate 
E  = Young’s modulus 
Nr   = uniform radial edge compressive load per unit length 

crrN   = linear buckling load 



Annals of Mathematical Modeling, 1 (2), 2019, - 97 
Anju V Nair, Abdul Rahman Mohd Kasim , Mohd Zuki Salleh  

Copyright © 2019, Annals of Mathematical Modeling, ISSN 7215-7822 

NLrN   = total uniform radial edge compressive load per unit length 

Tr
N  = uniform radial edge tensile load per unit length developed due to large lateral 

displacements 
H = thickness of the plate 
∆T  = temperature rise from the stress free temperature 

r ,    = in – plane strains 

ν  = Poisson’s ratio   
U = strain energy  
r, θ  = radial and circumferential coordinates 
W   = work done 

r ,      = curvatures 

r1, r2      = internal and external radii 
1 - 6   = generalized displacements 
β  = orthotropic parameter 

rE ,E    = Young’s moduli in radial and circumferential directions 

            = linear buckling load parameter  
  = postbuckling load  
b0  = central (maximum) lateral displacement of the circular plate 
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